Компания SAS поставляет лучшие аналитические решения необходимого для МТС уровня. Компания sas
мы анализировали данные и обучали модели задолго до того, как это стало модным / Блог компании SAS / Хабр
Наша аналитическая платформа работает в WalMart, Bank of America, Bank of China, Сбербанке, МТС. SAS как предмет преподают в МГУ, ВШЭ, МИФИ, МГТУ им. Баумана, МЭИ, МИИТ и других ВУЗах. А под катом — наша краткая история-знакомство, с которой мы хотим открыть наш блог на Хабре.
Кто мы такие
Компания SAS существует с 1976 г. Мы выросли из маленького проекта одного молодого профессора математики из Университета Северной Каролины. Началось все с небольших подрядов на статобработку данных Минсельхоза, которые он выполнял вместе со своими студентами.Разумеется, стандартных решений для автоматизации тогда не существовало, поэтому большинство статистических функций профессор писал сам на языках С и COBOL.
В какой-то момент количество перешло в качество: вместо того чтобы просто выполнять определенные расчеты для своих клиентов, профессор решил продавать сами свои наработки по расчетам и другим клиентам, которым необходимо было работать с аналитикой и статистикой, а также строить математические модели. Так появилась компания SAS.
Сегодня мы работаем по всему миру практически во всех традиционных отраслях, где необходим анализ статистики. В круг наших партнеров входят банки и крупнейшие страховые компании, ритейлеры и производственные компании, энергетика и нефтегаз, ресторанные и гостиничные сети, а также самые разные госструктуры. На сегодняшний день мы обслуживаем более 83 000 клиентов по всему миру. В нашей компании работает 14 000 сотрудников, более 4 000 из которых заняты непосредственно разработкой ПО.
Мы имеем богатую историю работы и на российском рынке. Хотя официальная история SAS в России началась с 1996 года, первые крупные внедрения нашего ПО относятся к самому началу 90-х, а отдельные решения работали еще при существовании СССР.
Одним из первых крупных клиентов на российском рынке стал Альфа-банк, история работы с которым уходит в самое начало 90-х. Среди крупнейших российских клиентов можно упомянуть и компанию МТС, где мы создавали хранилище данных и систему обработки управленческой и аналитической отчетности. Общий объем хранилища составлял 30 ТБ, что на тот момент (более 10 лет назад) являлось самым большим хранилищем данных в РФ, а возможно даже и в Европе. Также наши технологии и решения активно используется в сфере железнодорожного транспорта и некоторых других отраслях российской промышленности.
Зачем мы здесь
Одна из целей нашего присутствия на Хабре – познакомиться с молодежью, развеять мифы о нас, в том числе главный – о недоступности SAS из-за высокой стоимости и прочих ограничений. Нет, у нас не все платное – вы всегда можете найти варианты бесплатного использования, в том числе для исследований и изучения; нет, у нас не все недоступное – в открытом доступе есть масса ресурсов; нет, у нас не все на английском языке – и мы обязательно будем работать над увеличением русскоязычного материала.На каких рынках мы работаем
Мы активно работаем на банковском рынке, в число наших клиентов входят практически все крупнейшие банки. Наши решения используются в клиентской аналитике, целевом маркетинге, помогают обеспечить управление данными и подготовку управленческой и аналитической отчетностью. Одно из ключевых направлений — управление рисками, которое применяется в том числе для борьбы с мошенничеством.В последние годы мы активно выходим на рынок ритейла. В этой отрасли наши решения используются как в товарной аналитике (оптимизация цен, запасов, размещения на полках и пр.), так и в клиентской аналитике (все, что связано с персонализацией отношений с клиентами). Также аналитика дает реальный и быстрый эффект в таких секторах как логистика, медицина и сельское хозяйство
Сегодня потребности клиентов и рынка в аналитике развиваются чрезвычайно быстро, поэтому свои перспективы мы оцениваем с большим оптимизмом.
Ключевые требования
Однако не все так просто. Эффективность работы с аналитикой зависит от нескольких ключевых факторов, отсутствие которых способно испортить весь эффект.Во-первых, для аналитики в первую очередь необходимо иметь адекватные и упорядоченные данные. В некоторых отраслях это не представляет сложности (банки, телеком), но в некоторых структурированность, да и просто наличие нужных данных – большая проблема (например, страхование, агробизнес).
Во-вторых, большую роль играет то, насколько руководство готово внедрять аналитику и использовать ее при принятии решений, причем основная проблема кроется даже не в затратах, а именно в готовности менять схемы работы. Много где руководство считает, что если их схемы работают уже двадцать лет, а эксперты раньше принимали нужные решения без всякой аналитики, то и менять ничего не стоит. В современном мире эта стратегия работает либо до первого крупного происшествия (мошенничества, неурожая и пр.), либо до тех пор, пока компания не начинает заметно проигрывать на рынке конкурентам, использующим современные технологии и схемы управления.
В-третьих, в компании должна быть команда аналитиков, которые будут работать с полученными данными. Такие команды тоже есть не везде, и в телекоме аналитики, математики, дата-сайентисты окажутся скорее, чем, например, в сельском хозяйстве. Впрочем, и здесь все меняется: с одной стороны, все больше предприятий понимают, что необходимо иметь собственное аналитическое подразделение, с другой – использование искусственного интеллекта позволяет аналитическим системам работать точнее и лучше подстраиваться под существующие условия, что повышает эффективность в конкретных задачах. Плюс системы стали проще для пользователя.
Наконец, сейчас широко распространяется аутсорсинг, когда собственно работу аналитиков берут на себя партнеры, а заказчик получает готовые для понимания и использования аналитические данные. Например, часто в начале сотрудничества мы работаем в качестве внешних аналитиков (по модели RaaS), и клиент получает эффект и понимание, что и как работает, какие направления следует развивать, а какие – нет. Это поможет ему при формировании своей команды или же подтолкнет принять решение продолжить работать на аутсорсе.
Что мы делаем
Наша аналитическая платформа имеет очень широкую функциональность. В круг ее возможностей входят разведочный анализ, подготовка данных, классическое прогнозное моделирование и машинное обучение, прогнозирование на основе временных рядов, оптимизация, и много чего еще.Все блоки и решения мы разрабатываем сами. Поэтому мы понимаем, что и как работает и как взаимодействует между собой – у нас нет сложностей с согласованием работы различных компонентов и решений между собой. При этом блоки работают на единой платформе управления метаданными и имеют в основе общий язык программирования SAS Base.
Один из наших приоритетов – интегрировать наши решения в рабочие процессы и схемы принятия решений в компании. Дело в том, что если аналитика и данные существуют отдельно, «в вакууме», эффективность их использования существенно падает. Кроме того, без нормальной бесшовной интеграции очень велик риск операционных ошибок. А такие ошибки очень сильно бьют по доверию к аналитике и моделям.
Для встраивания аналитики в бизнес-процессы в SAS предусмотрен целый стек технологий. Интеграция на уровне данных (SAS Data Integration), интеграция на уровне потоков событий (SAS Event Stream Processing), интеграция на уровне запросов решений (SAS Decision Manager), интеграция на уровне управления жизненным циклом моделей (SAS Model Manager), интеграция на уровне разнородных аналитических инструментов типа R, Python, Scala (SAS Viya). В крупной организации, будь то банк, ретейлер, телеком или что-то другое, основная сложность — это огромное количество разнородных источников данных на разных платформах и СУБД, и большое число процессов, где требуется применение аналитики (потребителей аналитики), реализованных в разных системах.Естественно, что сегодня SAS работает не только по традиционной модели предоставления софта, но и предоставляет облачные сервисы. В самых разных форматах: SaaS (ПО как сервис), BaaS (бизнес как сервис – аутсорсинг аналитических процессов), RaaS (результат как сервис – реализация какого-либо законченного продукта для клиента под ключ, от разработки прогнозной модели, до формирования статистически обоснованной стратегии развития сети торговых точек, например).
Облачные сервисы востребованы больше не в банках, где все хорошо с данными, с деньгами, с аналитиками, а в других отраслях – страховании, ритейле, агросекторе, например. Клиенты в этих отраслях готовы привлекать внешних экспертов не только на этапе настройки, но и на постоянную работу. Еще один плюс облачных сервисов — отсутствие необходимости больших инвестиций в начале работы, что дает более быстрый выход на окупаемость и снижает риски убытков.
Как выбирают
Решения SAS выбирают крупные предприятия для серьезной работы, поэтому выбор решения занимает много времени и включает оценку широкого круга возможностей и параметров работы предлагаемых решений. При этом ключевым фактором для них является рост эффективности, который, как и точность принимаемых решений, в значительной степени зависит от точности используемой модели. Иногда заказчик даже устраивает своего рода соревнование – предлагает нескольким вендорам построить нужную ему аналитическую модель и смотрит, кто лучше справится с заданием.Однако сама точность модели – фактор не постоянный. Она зависит от многих факторов, как относящихся к модели, так и внешних. Например, точность модели полностью зависит от корректности и адекватности предоставляемых в рамках тестирования данных. Иногда они есть, иногда нужные данные находятся в рассеянном виде и их нужно искать, собирать и приводить к единому формату, либо вообще приходится самостоятельно налаживать их сбор.
Также на первом этапе не всегда понятно, что к чему, какие есть особенности и главное, что именно нужно клиенту. Поэтому на первых этапах работы преимущество в точности часто получают усредненные модели, которые уже «из коробки» дают относительно высокую точность работы. Однако такая модель со временем скорее всего будет терять актуальность за счет того, что меняются условия работы предприятия и самого рынка. Это необходимо учитывать и либо вручную, либо автоматически адаптировать модель к меняющимся условиям.
При правильной организации работы (когда модель подстраивается под особенности работы клиента и рынка) точность модели в первое время будет расти по мере «тонкой настройки», накопления данных и пр. В одном из внедрений наша модель изначально показала результат хуже, чем у конкурентов, однако в кратчайшие сроки, набрав нужную информацию и адаптировав ее работу, мы вырвались вперед.
Мы уверены в своих решениях, и та статистика, что у нас есть, показывает, что клиенты нам тоже доверяют. Отток клиентов у нас не превышает 1%, очень часто менеджеры и клиенты, переходя в новую компанию, стремятся и ее перевести на использование наших решений. В России мы растем на 40% в год, что дает нам основания считать, что наши решения востребованы.
Что привлекает клиентов
Больше всего клиенты ценят то, что получают от SAS готовые решения. Наши решения позволяют не просто разрабатывать модели – мы можем встраивать их в бизнес-процессы компании. Очень часто именно эта возможность становится решающей при принятии решения об использовании именно нашего продукта. Потому что зарабатывать деньги на любых моделях или аналитике можно только тогда, когда они реально дают возможность принимать прибыльные бизнес-решения и повышать эффективность. Поэтому мы уделяем огромное внимание тому, чтобы наша аналитика была тесно интегрирована в бизнес-процессы компании. Но это не единственное наше достоинство.Мы сами разрабатываем все свои продукты и решения, что обеспечивает единообразность и согласованную работу, в дальнейшем наши решения можно легко масштабировать или модифицировать. Наши решения тесно интегрированы между собой: мы предлагаем общую платформу, на которую можно «навешивать» разные модули. Благодаря этому степень риска при их внедрении гораздо ниже – клиенту не надо собирать в единую систему из чужих технологий и инструментов с неизвестным результатом. Можно сразу (и зачастую перед полноценным внедрением) оценить работу решения, составить предварительное впечатление.
В наши решения заложены накопленные нами знания и опыт в области решения конкретных аналитических задач, типовые бизнес-процессы, формы мониторинга и отчетности и т.д. Плюс, у нас нет «просто аналитиков», наши специалисты обладают предметными данными в конкретной области, что позволяет им лучше понимать ситуацию. В принципе, даже технические специалисты обладают знаниями и пониманием происходящих в отрасли процессов, что позволяет им более адекватно работать с данными.
Еще момент – скорость обработки данных. О высокой скорости говорят все, но чаще речь идет о каких-то специальных бенчмарках. Мы же имеем опыт реальных внедрений сложных решений с огромными скоростями обработки для таких компаний как WalMart, Bank of America, Bank of China, Сбербанк. Кроме того, у нас есть особая услуга: специальный дата-центр, имеющий 114 высокопроизводительных процессорных ядра, 3 ТБ оперативной памяти, 24 ТБ SSD емкости, который смонтирован в передвижном ящике весом в 120 кг. Мы можем поставить его у заказчика на пару недель, чтобы он смог проверить и оценить его работу. Да, и часто клиенты не хотят отдавать ее обратно.
Наконец, стоит отметить, что, хотя продукты SAS и стоят немало, для наших клиентов цены конкретных решений, как правило, не играют решающей роли – они больше смотрят на то, какие выгоды они получат от внедрения. Это может быть повышение рентабельности, снижение издержек или повышение скорости реагирования, что тоже повышает эффективность. Впрочем, если цена кажется излишней или заказчик пока не понимает, выгодным ли для него окажется использование наших решений, можно начать с облачных сервисов на платформе SAS – порог вхождения для них куда ниже, но при этом можно в полной мере оценить наши возможности.
Уже сейчас с решениями SAS работают ведущие предприятия во многих отраслях. SAS преподают в крупнейших вузах – спецкурсы, куда могут прийти все желающие, есть в МГУ, ВШЭ, МИФИ, МГТУ им. Баумана, МЭИ, МИИТ и др. Мы регулярно проводим набор на стажерскую программу, причем она расширена и на наших клиентов – всем нужны люди со знанием SAS.Мы с радостью услышим ваши пожелания о темах, которыми нам лучше поделиться. Пишите в комментариях вопросы, мы с радостью ответим, в том числе, в будущих материалах.
habr.com
Компания SAS поставляет лучшие аналитические решения необходимого для МТС уровня
Помимо поддержания темпов роста и занимаемой доли на рынке услуг мобильной связи - компания МТС стала в 2004 году крупнейшим оператором сотовой связи в России и Украине, занимая соответственно 35 и 52 процента рынка - основной причиной инвестиций в технологии SAS стало увеличение привлекательности МТС для инвесторов. Инвестиции должны быть направлены на формирование эффективной культуры бизнеса в таких сферах, как привлечение и удержание клиентов, обеспечение устойчивого роста, сокращение случаев мошенничества, прогнозирование спроса, увеличение прибыльности клиентов, разработка тарифной политики и оптимизация предоставляемых услуг. "В течение последних пяти лет в России наблюдается увеличение ВВП и снижение инфляции, - заявил Горбунов. - Мы усовершенствовали нашу финансовую деятельность, и в связи с этим повысилась привлекательность нашей компании для инвесторов. Отмечается возврат капитала за счёт прямых и портфельных инвестиций".
Горбунов также подчеркнул, что стратегические интересы МТС сместились с приобретения региональных операторов в сторону их интеграции и создания основы для продолжительного роста за пределами основных рынков компании. К основным рынкам МТС относятся Россия, Украина и Белоруссия с общей численностью населения 200 млн. человек, при этом основной интерес для развития бизнеса компании в настоящее время представляют страны СНГ, включая Узбекистан, Казахстан и Грузию с общей численностью населения 78 млн. человек.
"В связи с расширением деятельности компании на региональных рынках нам пришлось внедрить новую структуру управления, чтобы стандартизировать и оптимизировать выполняемые операции, - заявил Горбунов. - Это требует внедрения систем управления и контроля. Региональные рынки сильно отличаются друг от друга по уровню своего развития и наличию конкурентных компаний, Поэтому для каждого рынка необходимо разработать свой подход". По его словам, такой подход предполагает проведение агрессивных маркетинговых кампаний и политики в области инвестиций с целью завоевания 35 % доли на рынке, ее поддержания, развитие сети партнёров по сбыту и предоставление высококачественных услуг, чтобы избежать последующего сокращения рыночной доли. Компания SAS обеспечивает поддержку МТС во всех этих областях, в том числе и полную поддержку деятельности генерального директора компании Мобильные ТелеСистемы.
Грандиозная реструктуризация
Цели МТС ясны. Создав 10 структур управления в регионах, компания стремится обеспечить более высокое качество связи и применять более совершенные "методы контроля" в более чем 70 региональных представительствах за счёт интеграции и гармонизации их деятельности. Кроме того, по словам Горбунова, распределение ответственности между различными уровнями управления "будет гарантировать более высокое качество выполнения стратегических и текущих задач". Компания стремится делегировать полномочия на принятие решений по текущим рабочим вопросам, а также контроль этого процесса регионам в рамках основной стратегии развития компании". В свою очередь, стандартизация бизнес-процессов приведёт к формированию стандартов выполнения процессов и процедур внутри компании. Это обеспечит последовательность принятия решений, а также увеличит прозрачность, эффективность и скорость выполнения операций.
Поскольку Российское представительство SAS уже продемонстрировало соответствие своих решений бизнес-требованиям МТС, руководство МТС, включая финансового директора, руководителя отдела информационных технологий и директора по маркетингу, выбрало SAS как наиболее подходящее решение для своей компании. "Принимая во внимание наши отношения с SAS и опыт ее работы по ключевым направлениям, мы обратились к компании SAS с предложением разработать и внедрить систему для управления деятельностью нашего предприятия, - сообщил Горбунов. - В действительности, мы начали сотрудничать с SAS еще в 2001 году в области решений для бизнес-аналитики". Было осуществлено внедрение хранилищ данных и архитектуры бизнес-аналитики, включая различные системы отчётности и средства анализа, интегрированные через Интернет-портал.
Многофункциональные решения
Начиная с 2002 года в МТС реализовано множество проектов с использованием SAS. Например, отделы маркетинга, разработки новых продуктов, финансового контроллинга, обслуживания клиентов (VIP и корпоративных), информационных систем и услуг используют систему для учета, анализа и отчетности по удержанию клиентов. Эта система позволяет выполнять сегментацию клиентов и анализ их поведения, планировать и осуществлять перекрестные и дополнительные продажи, а также оценивать кредитоспособность. Руководители теперь могут выделять проблемы, связанные, например, с низким уровнем удержания клиентов, установить его причины и принять необходимые меры для предотвращения оттока клиентов. Кроме того, решение SAS для управления маркетинговыми кампаниями совместно с решениями для удержания, сегментации клиентов, а также перекрестных / дополнительных продаж поддерживает также работу отдела продаж МТС и отдела обслуживания абонентов.
Развертываются также решения SAS® Financial Management и SAS® Activity-Based Management, которые помогают финансовым директорам и бухгалтерии в осуществлении финансовой консолидации и составлении отчётности в соответствии с российскими и международными стандартами, в то время как разработанная на SAS система анализа и предотвращения случаев мошенничества поддерживает работу отделов информационных систем и услуг, а также финансового контроллинга.
"Мы используем решение SAS® Strategic Performance Management в частности для создания оптимальной системы анализа и отчётности на основе 200 основных показателей производительности и мы поэтапно переходили к внедрению карт сбалансированных показателей", - продолжает Горбунов. Это подразумевает постановку стратегических задач, выстраивание основных показателей производительности и целей в одну линию с региональными требованиями и сферами ответственности, обеспечивая идентификацию необходимых данных и предоставляя доступ к информации, необходимой для успешного развития бизнеса.
Система SPM включает различные параметры, все из которых соответствуют требованиям МТС. "Все основные показатели производительности отслеживаются на региональном уровне, даже если все полномочия сосредоточены в центральном офисе компании, - подводит итог Горбунов. - А поскольку на общую эффективность оказывается совокупное влияние различных основных показателей производительности процессов, мы разделили эти показатели на три разных уровня: корпоративный, функциональный и на уровне отдела. Каждый раз, когда изменяются приоритеты в связи с быстрым развитием бизнеса, мы ежемесячно отслеживаем все основные показатели производительности и анализируем их с учётом особенностей каждого региона. И, наконец, поскольку очень важно, чтобы все руководители региональных представительств были в курсе стоящих перед ними задач, в нашей компании работает легкодоступная интранет-система. Отчёты публикуются и для внешнего пользования - для нас очень важно, чтобы наши акционеры могли следить за деятельностью компании".
Компания МТС продолжает расти и развиваться, увеличивая долю своего присутствия вне "традиционных" основных рынков, и возможности, предоставляемые SAS, помогут компании выйти на другие международные рынки, осуществить запланированный переход от стандарта GSM к стандарту 3G, а также расширить существующую сеть партнёров по продажам.
www.sas.com
Исследовательская корпорация при главном Мичиганском университете (CMU-RC) совместно с SAS обеспечивают победы многим компаниям
«Заставить идеи работать». Это прекрасный лозунг корпорации CMU-RC. Используя базовые аналитические инструменты SAS, CMU-RC помогла десяткам компаний получить конкурентное преимущество, проводя обучение в области прогнозной аналитики, углубленного анализа данных, создания стоимости, в управлении взаимоотношениями с клиентами и сравнительном анализе.
- Каковы возможности для дополнительных и кросс-продаж существующим клиентам?
- Что мы можем узнать о наших текущих клиентах, чтобы спланировать привлечение новых?
- Какое влияние окажет предполагаемый приход на рынок того или иного конкурента?
- Какие требования к будущему кадровому обеспечению заложены в моем бизнес-плане?
- Какие инициативы, предпринимаемые нашими конкурентами, повлияют на их положение на рынке?
Подобные вопросы не дают по ночам спать директорам. Благодаря большинству компаний, таким как Dow Chemical, которые называют штат Мичиган своим домом, компания SAS и CMU-RC получили площадки для применения исследовательской и продвинутой аналитики, а также ресурсы, чтобы ответить на ключевые вопросы бизнеса.
Несмотря на очевидные выгоды, бизнес-аналитика мало использовалась или, еще хуже, вовсе не применялась на практике во многих крупнейших компаниях мира, поясняет Тимоти Плетчер (Timothy Pletcher), директор прикладных исследований CMU-RC. «Даже наиболее передовые компании, те, что преданы идее использования аналитики и уже применяют ее на протяжении ряда лет, поверхностно используют весь ее потенциал», поясняет Плетчер. С помощью SAS и других единомышленников он надеется изменить такое положение дел.
Основанная в 2002 году, CMU-RC - некоммерческая организация, которая способствует и оказывает содействие прикладным исследовательским проектам между учебным заведением и коммерческими организациями. Привлекая разнообразную профессиональную экспертизу более, чем 700 сотрудников университета, CMU-RC создает локализованные под заказчика команды, специально «заточенные» под уникальные бизнес-задачи компаний, чтобы найти ответы на критически важных для бизнеса вопросы. Инициативы CMU-RC традиционно включают в себя сбор большого объема данных, выявление известных и ранее неизвестных взаимосвязей между отдельными показателями, осмысление этих взаимосвязей (средствами углубленного анализа), прогнозное моделирование (средствами data mining и/или текстового анализа), визуализацию (геоинформационные системы) для достижения поставленных бизнес-целей.
В результате партнерства компаний с SAS, CMU-RC имеет возможность предложить своим клиентам преимущества продвинутой аналитики, особенно прогнозного анализа. Для партнеров IBM и ESRI мощь средств SAS усиливается за счет аппаратных средств и пространственных аналитических инструментов этих компаний. Результатом является уникальное сочетание передовых технологий и отраслевой экспертизы, специально приспособленных под уникальные потребности многих ведущих компаний Мичигана.
Продвижение сотрудничества с SAS
«Университет центрального Мичигана всегда был лидером в области бизнес-анализа», говорит Джерри Оглесби (Jerry Oglesby), директор SAS по консалтингу в области высшего образования. На самом деле, Оглесби считает CMU первым университетом, который создал совместную с SAS программу сертификации в области углубленного анализа (data mining). В это же время была разработана и концепция организации CMU-RC. Как лидер в своей области компания SAS была признана в качестве поставщика аналитических средств, а Оглесби вошел в ее совет директоров.
В короткий срок SAS предоставила университету и CMU-RC трехлетнее право на использование своего программного обеспечения. (С тех пор SAS частично возобновляет эти права, как университету, так и CMU-RC).
«SAS впечатляет те изменения, которые CMU-RC произвела в деловом и академическом сообществе Центрального Мичигана», поясняет Оглесби.
Проекты, выполняемые в CMU-RC
Организация CMU-RC помогает компаниям эффективно, вовремя и с незначительным риском найти ответы на наиболее важные вопросы бизнеса.
«CMU-RC анализирует данные хранилища с практической целью», говорит Плетчер. «Подобная оценка очень обширна и охватывает целый спектр аналитических технологий и методологий, включая прогнозное моделирование, углубленный или текстовый анализ, геоинформационные системы, статистический анализ, исследование операций, моделирование и визуализацию данных». Невозможно оценить те потенциальные преимущества, которые клиенты CMU-RC при этом могут реализовать.
Один из наиболее частых запросов к CMU-RC касается, например, анализа лояльности клиентов и результатов усилий по их удержанию и привлечению, оценки того, как эти факторы могли бы повлиять на итоговый доход компании. Результаты могут быть весьма впечатляющими. Так, в компании The Dow Chemical Company – одном из клиентов CMU-RC - 5% -ый рост показателя удержания клиентов увеличивает размер прибыли от клиента в течение его жизни с 5.5 млрд. до 22.5 млрд долл.
Для оказания помощи в применении продвинутой аналитики в CMU-RC существует служба Business Insight Services. Первый контакт с компанией, заинтересованной предложениями CMU-RC, включает мозговой штурм, где специалисты CMU-RC, профессорско-преподавательский состав университета и компания обсуждают конкретные задачи бизнеса и те аналитические методы, которые могут эффективно их решить.
«По ходу этих мозговых штурмов компании, опыта и экспертизы которых в рамках собственной деловой практике зачастую не хватает, взаимодействуют с компетентными, новаторскими профессорами университета. Последние вносят дополнительный импульс в процесс обсуждения», сказал Плетчер. Очень часто по соглашения всех трех сторон подобные встречи завершаются рядом проектов.
Для каждого проекта назначается менеджер (кадровый сотрудник CMU-RC на полный рабочий день), старший научный сотрудник и совет профессоров из университета. Очень часто в проекте бывают задействованы студенты университета для помощи в исследовании и анализе.
Г-на Оглесли одинаково вдохновляет возможность продемонстрировать профессоров университета и студентов в работе с аналитическими продуктами SAS.
«Миссия моей группы – увеличивать осведомленность и использование продуктов SAS в университетах страны. Университет – преданный помощник SAS и выпускает очень сильных студентов, имеющих крепкие базовые знания продуктов вендора. Это замечательная программа и CMU – самый лучший университет, работающий с ними».
Растущий интерес к бизнес-анализу
Кроме помощи компаниям в решении важных проблем бизнеса и популяризации SAS, организация CMU-RC - это огромный ресурс для сообщества в области BI в целом, объединяя лидеров отрасли, академического образования и технологии для обсуждения последних исследований в области бизнес-анализа. CMU-RC ежегодно проводит четыре региональных семинара по различным темам бизнес-анализа, а также ежегодный форум Business Insight Forum, где собираются руководители ряда корпораций, чтобы поделиться тем, как они используют инновации бизнес-анализа. В мероприятии прошлого года, спонсируемом компанией SAS и другими, приняли участие финансовые директора и директора по маркетингу, президенты и другие руководители более чем 50 крупнейших компаний Мичигана, а также спикеры компаний the Ford Motor Company, Henry Ford Health System, IBM Watson Research, Lubrizol, Proctor & Gamble, and Steelcase.
www.sas.com